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Motivation

Complex networks are often modelled as stochastic processes
e to encapsulate a lack of knowledge or inherent non-determinism,
E.g., natural systems (bio-chemical, ecological or physical)

e to model and analyse the global behaviours of systems containing components with
both continuous-time and discrete-time evolutions,

E.g., embedded systems, communication networks, the Internet, service-oriented
architectures, web-services, financial systems, market scenarios, etc.

Such systems are frequently modular in nature

e consist of modules which are systems in their own right,

e the modules interact, communicate and interrupt each other

e the global behaviour depends on the behaviours of the modules and on their links,
e the modules are easier to model, test, measure, analyse.

A possible approach: Stochastic Process Algebras



Nondeterministic Process Algebras

A successful solution for the nondeterministic case => Process Algebras (PAs)

e The concurrent communicating systems are conceptualised along two axes:
— the behaviours are described by (labelled) transition systems (LTS) => coalgebras;
— the compositionality is solved by construction principles => algebraic structure;
— the algebraic and the coalgebraic structures are not independent:
structural operational semantics (SOS) relates the two by defining the
behaviour of a bigger system from the behaviours of its modules => bialgebra.

Two endofunctors B (for behavior) and J (for compositional specifications)
the class X of systems is simultaneously a 8-coalgebra and a J-algebra.
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« A (a natural transformation between § and 8B) defines a GSOS = 3%B-Bialgebra
D. Turi, G. Plotkin, 7owards a mathematical operational semantics, LICS'97




Nondeterministic Process Algebras

A successful solution for the nondeterministic case => Process Algebras (PAs)

e The concurrent communicating systems are conceptualised along two axes:
— the behaviours are described by (labelled) transition systems (LTS) => coalgebras;
— the compositionality is solved by construction principles => algebraic structure;
— the algebraic and the coalgebraic structures are not independent:
structural operational semantics (SOS) relates the two by defining the
behaviour of a bigger system from the behaviours of its modules => bialgebra.

e PAs reflect elegant mathematical structures and are supported by easy and appealing
underlying theories.

e PAs are based on a general framework for operational description of processes (GSOS)
that makes the languages easy to extend with new (algebraic) operators.

e The underlying theory of PAs is robust: it can be canonically adapted when new
algebraic operators are required => high applicability in various fields.



The challenge of stochastic processes

e The success of hondeterministic Process Algebras has inspired the research in the
field of stochastic systems => Stochastic Process Algebras (SPAS)

e LTS is replaced by (labelled) Markovian processes (e.g., CTMCs)

— nondeterministic a-transition:

p —2>Q

— stochastic (Markovian) a-transition:
p 245 q
re[0,+00) is the rate of an exponentially distributed random variable that
characterises the a-transitions from P to Q.

e In recent decades a plethora of SPAs appeared, such as
— TIPP (Gotz, Herzog, Rettelbach)
— PEPA (Hillston)
— EMPA (Bernardo, Gorrieri)
— Stochastic pi-calculus (Priami, Degano)
— StoKlaim (De Nicola, Katoen, Latella, Loreti, Massink)
etc.



The challenge of stochastic processes

e In SPAs the nondeterminism is replaced by a “race policy” and this requires major
modifications at the level of the underlying theory.

e The attempts to provide a pointwise semantics, similar to nondeterministic PAs, face the
counting problems and the known SPAs solve them using “ad hoc” solutions such as the
multi-transition system (PEPA) or the proved SOS (stochastic pi-calculus).

Problems
(B. Klin, V. Sassone, Structural Operational Semantics for Stochastic Process Calculi,

FOSSACS'08)

e These SOS formalisms are difficult to extend to a general format for well-behaved stochastic
specifications;

e In stochastic pi-calculus (with proved SOS) parallel composition is not associative up to
bisimulation;

e In PEPA, if arbitrary relations between transition rates and the rates of subprocesses are
allowed, stochastic bisimulation is not a congruence;

A possible explanation (ibid.): in a well-behaved SOS framework the labels of transitions should
only carry as much data as required for the derivation of the intended semantics;

Both the proofs and the transition multiplicities contain superfluous data.




The challenge of stochastic processes

A solution to return to the simplicity and elegance of nondeterministic PAs:
instead the pointiwise semantics, use a semantics based on distributions.
P arsQ => P—s p, p@)HEQH=T
where [ is a distribution (indexed by actions) on the measurable space of processes.

Similar approaches
R. Segala, N. Lynch, Probabilistic Simulations for Probabilistic processes, 1995.

M. Kwiatkowska, G. Norman, R. Segala, J. Sproston, Automatic Verification of Real-Time
Systems with Discrete Probability Distributions, 1999.

E. P. de Vink, J. Rutten, Bisimulation for probabilistic transition systems. A coalgebraic
approach, 1999,

J. Rutten, Universal Coalgebra: a theory of systems, 2000.

F. Bartels, On Generalised Coinduction and Probabilistic Specification Formats, 2004.

M. Bravetti, H. Hermanns, J.-P. Katoen, YMCA. Why Markov Chain Algebra?, 2006.

B. Klin, V. Sassone, Structural Operational Semantics for Stochastic Process Calculi, 2008.

R. De Nicola, D. Latella, M. Loreti, M. Massink, Rate-based Transition Systems for Stochastic
Process Calcull, 20009.

In general, the space of processes considered is (P, 2P) — a compact representation of the
pointwise semantics.



The role of Structural Congruence

Our approach: Structural congruence organizes a measurable space of processes; instead of 2P we
use the sigma algebra [1 generated by P=; we use distributions on (P,[1).

Some of the advantages of our approach:
e Structural congruence is particularly appropriate for applications in Systems Biology
(it has been invented from chemical analogy G. Berry, G. Boudol, 7he Chemical Abstract Machine, 1990);

e By considering the distributions on (P,[1), the counting problems are solved on block while the
labelles of the transition are the observable actions, as in the case of nondeterministic PAs;

e SOS is elegant, compact and the algebraic and coalgebraic structures are clean: SOS does not
involve a rule of type (Struct); stochastic bisimulation is a congruence and it extends the
structural congruence;

e The approach can be extended to other calculi; a general format can be defined, on the line of
GSOS (Turi-Plotkin) or SGSOS (Klin-Sassone);

e The approach, extended to pi-calculus, provides a simple solution to the problems of bound
output and replication (Cardelli, Mardare, Stochastic Pi-Calculus revisited, http://lucacardelli.name/)

e The approach allows a simple extension to metric semantics.



Stochastic CCS: The syntax

Let A be a denumerable set of action names endowed with
— aninvolution *:A— A, a*+#a, a**=a
— a weight function :A—Q*, ((a)= (a*) for all acA
Llet C¢ A and At=A U {C}

The set P of processes are defined by the following grammar, for arbitrary reQ+.
P.=0 | &P | PIP | P+P
€:= aeA | &(r)

We extend the weight function by «(&(r))=r.

N\_7z

Structural Congruence “=" is the smallest equivalence relation on P that satisfies

I. 1.P|Q=Q|P; 2. (P|Q)|R = P|(Q|R); 3.P|0 = P.
II. 1.P+Q = Q+P; 2. (P+Q)+R = P+(Q+R); 3. P+0 = P.
III. if P = Q, then for any € and any ReP,

1. PIR = Q|R; 2. P+R = Q+R; 3.&.P=c¢cQ.



The measurable space

For arbitrary PeP, let P= be the =-equivalence class of P and P= the set of =-equivalence
classes of processes.

Let [1 be the sigma-algebra generated by P= over P.

Theorem: (P,[1) is a measurable space.

Let A(P,[1) denote the set of measurable functions on (P,[1).

For 7el,let  S|7= U (P|Q* and &= U Rs
PesS, QeT P|ReS, PeT

Lemma: IfS,7€[]landPeP, then S|7 and S, are measurable sets.



Structural Operational Semantics

First challenge: define the operational semantics based on rules of type
P—sy,
where p: A*Y—— A(P,[1) is such that
for each xe A+, p(x)e A(P,I1) is a measure and
foreach Sell, p(X)(S)=reQ*,
r is the rate of the x-transition from P to (elements of) S.
Notice that S'is not just any set, but a measurable set, e.g. p(x)({Q}) is undefined.

More generally, the operational semantics encodes a function
0: P >[At—> A(P,[1)]
defined by 6(P) =y iff P—— L.

In this way, a stochastic process PeP is just a Markov process (P,P,[1,8), where
(P,[1,8) is an A* - Markov kernel.

Second challenge: define the operational semantics such that
behavioural equivalence of SPA processes = stochastic bisimulation of Markov processes



Structural Operational Semantics

The null process "0”

Intuition: for each measurable set S €[1, and any action x €A,
0 X055,

Llet @: At—— A(P,[1) such that for any x eA*,

w(X)=w,

where w € A(P,[1) is the null measure defined, for arbitrary S €[, by
w(S5)=0.

The first SOS rule is
(Null) 0 > 5



Structural Operational Semantics

The prefixing “c.P”

all(a) S

Intuition: a.p = S(n.p _CI_ p=,
for any measurable set S €[1, with PS5, for any measurable set S €[], with P¢S,
ap 20, g o(r).p 20 5
for any measurable set S €[1 and any x#a, for any measurable set S €[1 and any x#G,
apX9 5 s 5(r).p X0 5 s

Let [EE]: At — A(P,[1) such that for any a €A,

[ Iif] (a)={gfl(€)lpz), a=& [ Es] (C):{D(L(E)IPE)I e2ZA

aFe W, eeA

The second SOS rule is

(Guard) cp H[ Es]



Structural Operational Semantics
The nondeterministic choice "+”

Intuition: if for some measurable set S €[] and some action x
PXrys and QX555
then, P+Q XI*S 5 g

Let @ : AP,MT) A" X A(P,[T) A" —> A(P,[) A”
such that for any p,p’e A(P,[1) A*, any action x and any measurable set S,

(1D W)X)(S)=HX)(S) + ' (x)(5)

The third SOS rule is ,
P—sp Q—y

P+tQ —>pu @ V'

(Sum)




Structural Operational Semantics
The parallel composition "|”

Intuition: for a€A, if $=5’|P= =5§7|Q= and P2a[l55” Qasy &
then P|Q _ars 5 g
P|Q
P Q
a,r+s

a,r a,s
\L/ | \L’ : \'4

Let  »®q : AP, A" X AP,MT) A" A(P,MT) A
such that for any p,p’e A(P,[1) A*, any atomic action a and any measurable set S,

(M p®q H)@)(S)= H(a)(Sy ) + H'(X)(S)
(if P M and Q b, then P|Q Hp®q M)




Structural Operational Semantics

Intuition: for P|Q the rate of G-action subsumes
« the rate of &-action of P and the rate of G-action of Q

« the rate of synchronizations between P and Q - we use the mass action law.
(M. Calder, S. Gilmore, J. Hillston, Automatically deriving ODESs from process

algebra models of signaling pathways, CMSB'05.) PIQ

P G p+q+rr'+ss’+tt'+...
C’p Clq

A
2K DECE

5=5'|P= =5"|Q°
— T/I 7'//

for p, B* with finite support: acA
(M p&q H)C)(S )= H(C)(S ) + H(C)(S ) +




Structural Operational Semantics
The parallel composition

\\|II

Forany AQE€T, let  ,®,: AP,M) A" X A(P,MT) A" —A(P,1) A"
such that for any p,p’e A(P,[1) A* (with finite support), any atomic action a and any Se 1,

(M Qo H)(@)(S)=H(@)(5p) + H(X)(Sp)

aeA , . .
(M BHONS)= HENS) + KNS ) + D H@)(T) X p'@)(7")
T7=5 21(a)

The fourth SOS rule is
P—py Q—

PIQ—u PE®QE|~|’

(Par)



The algebra of mappings

We have defined an algebraic structure (A(P,) A", m, [i,] , D, /) with operators
defined for arbitrary €, Pand Q.

Lemma:

L DHudp=you
RQEON)DU=pD W & u),
B) KD w=p.

Lo () p Rl =1 BrH
(2) (M M) p1g®rH'=H Roir (M RrH"),
B)H Ry =H.

Notice that (P, 0, €, +, |) and (A(P,1) A", w, [‘;] , @, ) have different signatures.



Structural Operational Semantics

(Null) ————

(Guard) € p —%[ EE]

P—sp Q—
PHQ— = p

(Sum)

P—spy Q—
PIQ = M " @7

(Par)

Lemma: For any P € P, there exists a unique p € A(P,[1) A" such that P—> ..
Moreover, | has finite support.

Notice that we have no rule that guarantees that structural congruent processes have
identical behaviour. But we can prove this.

Theorem: If P=Q and P——>pu,then Q — L.



Stochastic bisimulation

We can define 6: P >[A*—— A(P,[T)] by 8(P) =p iff P—s p.
Theorem: (P,[1,0) is an A* - Markov kernel and (P,P,[1,8) is a Markov process.

Definition: A rate bisimulation is an equivalence R on P such that for arbitrary P,Q € P
with  P——>p and Q——>', (P,Q) € R iff for any Se [1(R) and any x € A*,
HO)(S )= p(X)(S).
The stochastic bisimilation is the reunion of rate bisimulations. Notation: P - Q.

For arbitrary PeP, let P~ be the —-equivalence class of P and P~ the set of —~-equivalence
classes of processes.

Examples (discussed in the paper) P|b.Q=

a,(a
1. a,b € A, a*+b, P|b.Q -~ a.(P|b.Q)+b.(a.P =
abeh,a a.Pb.Q - a.(PIb.Q)+b.(a |Q)§(b);a_p|q

& P| &(s).Q"
2. r#s, &(r). P|5(s).Q - &(r).(P| &(5).Q) + &(s).(5(r)-PIQ) <
G, 5(r).P|Q=



Stochastic Bisimulation

Examples (discussed in the paper)

3. We have seen that for a*#b, a.0|b.0 - a.b.0+b.a.0 => S=a.0|b.0-=a.b.0+b.a.0~

Let P = &(r).(a.0|b.0) + &(r).(a.b.0+b.a.0)
Q = &(r).(a.0|b.0) + &(r).(a.0|b.0)
R = &(r).(a.b.0+b.a.0) + &(r).(a.b.0+b.a.0)
Observe that
C,2r C,2r C,2r

P———>5 Q——> S5 R————5§
and P-Q - R.
the three processes do not agree on any transition:

P _Gr . a.0lb.0 Q_G:2r .a.0/b.0 R_G.0 . a.0/b.0

P_Grf . ab.0+ba0 Q-C60.,ab0+ba.0 R-G2' ab.0+b.a.0



Stochastic Bisimulation

Lemma:
For arbitrary P,Qe P, if P=Q, then P - Q.

The reverse is not true, as shown in a previous example:
a.0|b.0 -~ a.b.0+b.a.0 and a.0|b.0 # a.b.0+b.a.0.

Theorem:
Stochastic bisimulation is a congruence, i.e.,
1.if P~ P, then for arbitrary ¢, €.P - €.P";
2.if P-P and Q - Q", then P+P' -~ Q+Q’;
3.if P-P" and Q- Q’, then P|P" - Q|Q".



An Application: Metrics for Stochastic Processes

Bisimulation is a strict concept: it only verifies if two processes have identical behaviour.
It is useful to have a metric that measure the similarity of processes in terms of behaviours.

Our presentation of stochastic processes is particularly appropriate to define such a metric
via metrics for distributions (e.g. Kantorovich metrics):

The intuition: the distance between P and Q, when P—> p and Q ——> |J/, is given by
d(P,Q)= sup d(H(x), H'(x))

XEA*

where 0 is a distance on distributions.

Related works on metrics for systems:
P. Lincoln, J. Mitchell, M. Mitchell, A. Scedrov, A probabilistic poly-time framework for protocol analysis, 1998

J. Desharnais, Labelled Markov Processes, 1999
F. Van Breugel, J. Worrell, An Algorithm for Quantitative Verification of Probabilistic Systems, 2001

L. de Alfaro, T. Henzinger, R. Majumdar, Discounting the Future in Systems Theory, 2003
V. Gupta, R. Jagadeesan, P. Panangaden, Approximate Reasoning for Real-Time Probabilistic Processes, 2006



An Application: Metrics for Stochastic Processes

A discount metric: let c€[0,1] and xeA* ; we define the pseudometric
d,:PXP —>R*

P Q
X,r X, I
' ,rz I 3 X,Sl X 52 ,53
Py- P,- P5- Q;” 0% Q;”

dcx(P/Q)= min { |r1_51| + C dcx(PllQl) + |r2_52| +C dcx(PZIQZ) + |F3'S3| +C dCX(P3IQ3)I
|ri-sq| + ¢ d<(Py,Qq) + |ry-s3| + c d<(P,,Q3) + |r5-s,| + ¢ d(P5,Q,),
|ri-s,| + ¢ d<(Py,Q,) + |ry-s;| + c d<(P,,Q,) + |r5-s3] + ¢ d<(P5,Q5),
|ri-s,| + ¢ d<(Py,Q,) + |ry-s3| + ¢ d<(P,,Q3) + |r5-s;| + ¢ d(P5,Q,),
|ri-s3| + ¢ d<(Py,Q3) + |ry-s4| + c d<(P,,Q,) + |r5-s,| + ¢ d(P5,Q,),
|ri-s3| + ¢ d<(Py,Q3) + |ry-S,| + c d<(P,,Q,) + |rs-s;| + c d(P5,Q;) }

dc:PXP —R*
d<(PQ) = sup d<(PQ)
XEAt

Notice that ¢ discounts the future; if we take c=1 the future states count as the present
state; if we take c=0 only the first step of the computation is considered.




An Application: Metrics for Stochastic Processes

Example (discussed in the paper)

5(2).5(1).0  5(2).(5(1).0+ 5(1).0) 5(2).(5(1).0+a.0)
5,2 0,2 5,2
\4 \\4 \l/
5(1).0- 5(1).0+ 5(1).0 5(1).0+a.0
.1 0,2 CJW
\4 v \
0- 0- 0- 0-

de,(5(2).5(1).0 , 5(2).(5(1).0+ &(1).0)) = [2-2| + ¢ [2-1] = ¢
de,(5(2).6(1).0 , 5(2).(5(1).0+a.0)) = |2-2| + ¢ |1-1| = 0

de,(5(2).(5(1).0+ &(1).0), &(2).(5(1).0+a.0))= |2-2| + ¢ [2-1| = ¢




An Application: Metrics for Stochastic Processes

Example (discussed in the paper)

a.a.0 + &(r). &(r).0 a.(a.0+a.0) + &(r).0|5(r).0

a,|(a) o1 a,\(a) S,2r

a.0- &(r).0" a.0+a.0- &(r).0"
a,(a) lcrr a,2ua) lcrr

0- 0- 0- 0-

d<(a.a.0 + &(r). &(r).0, a.(a.0+a.0) + &(r).0|&(r).0) = max {c (a), r}




Conclusions

e We took the challenge of reconsidering Stochastic Process Algebras from a foundational
perspective

e The goals:
— understanding if the “ad hoc” approaches with their heavy mathematics can be avoided
— providing well-behaved SOS formats similar to the formats of nondeterministic PAs

e The way to do it:

— instead of trying to mimic the pointwise semantics of PAs, mimic their mathematical
structures — move from the space of processes to the space of distributions

— center the work on the equational theory of structural congruence => work with the
equational monad instead of the freely generated monad

— lift the algebraic structure from the space of processes to the space of distributions
e Advantages:
— an elegant and compact SOS
— well-behaved SOS: bisimulation is a congruence that extends structural congruence
— a simple extension to metric semantics
— simple solutions to the problems related to recursion and bound output
e The current state of our research:
L. Cardelli, R. Mardare, Stochastic Pi-Calculus Revisited, http.//lucacardelli.name/



